C

WA LT T
ao S

topics

* Using garbage collection and resource management

* Review

* The life and times of an object
* Writing destructors

* Why use the garbage collector?

review

* how to create variables and objects

* how memory is allocated when you create variables and objects ?
* stack
* Heap

* Life time
* Value type
» Reference type

The life and times of an object

int sizeOfSquare = 99;
Square mySquare = new Square(sizeOfSquare); //Square is a reference type

object creation is really a two-phase process:

1. The new operation allocates a chunk of raw memory from the
heap. You have no control over this phase of an object’s creation.

2. The new operation converts the chunk of raw memory to an object;

it has to initialize the object. You can control this phase by using a
constructor.

 can access the members of an object by using the dot operator (.).
* mySquare.Draw();

 When the mySquare variable goes out of scope
* the Square object is no longer being actively referenced.

* The object can then be destroyed, and the memory that it is using can
be reclaimed

» object destruction is a two-phase process

1. The common language runtime (CLR) must perform some tidying
up. You can control this by writing a destructor.

2. The CLR must return the memory previously belonging to the object
back to the heap; the memory that the object lived in must be
deallocated. You have no control over this phase.

garbage collection

* The process of destroying an object and returning memory back to
the heap is known as garbage collection.

Destructors

* You can use a destructor to perform any tidying up that’s required
when an object is garbage collected.

* The CLR will automatically clear up any managed resources that an
object uses, so in many of these cases, writing a destructor is

unnecessary .

e if a resource is large
* a destructor can prove useful.

Writing destructors

* A destructor is a special method, a little like a constructor, except that
the CLR calls it after the reference to an object has disappeared

* a tilde (~) followed by the name of the class.

example
class FileProcessor{

FileStream file = null;
public FileProcessor(string fileName) {
this.file = FiIe.OpenRead(fiIeName); //open file for reading

}

~FileProcessor() {
this.file.Close(); // close file

}

Restrictions

* Destructors apply only to reference types; you cannot declare a
destructor in a value type, such as a struct

* You cannot specify an access modifier (such as public) for a
destructor.

A destructor cannot take any parameters.

Internally, the C# compiler automatically translates a
destructor into an override of the Object.Finalize method.

class FileProcessor class FileProcessor
{ {
~FileProcessor() protected override void Finalize()
{ {
//your code goes here try {
} //your code goes here
} }
finally{
base.Finalize();
}
}

* only the compiler can make this translation. You can’t write your own
method to override Finalize, and you can’t call Finalize yourself

Why use the garbage collector?

* You can never destroy an object yourself by using C# code. There just
isn’t any syntax to do it.

* How many references can you create to an object?
* managing object lifetimes is complex
» C# decided to prevent your code from taking on this responsibility

The garbage collector makes the following guarantees:

* Every object will be destroyed, and its destructor will be run. When a
program ends, all outstanding objects will be destroyed.

* Every object will be destroyed exactly once.

* Every object will be destroyed only when it becomes unreachable—
that is, when there are no references to the object in the process
running your application.

» you should never write code that depends on destructors running in a
particular sequence or at a specific point in your application.

garbage collector thread

* A thread is a separate path of execution in an application. Windows
uses threads to enable an application to perform multiple operations
concurrently.

* The garbage collector runs in its own thread and can execute only at
certain times

How does the garbage collector work?(at a high level)

It builds a map of all reachable objects

2. It checks whether any of the unreachable objects has a destructor that
needs to be run (a process called finalization)(is placed in a special queue
called the freachable queue)

3. It deallocates the remaining unreachable objects (those that don’t
require finalization) by moving the reachable objects down the heap

At this point, it allows other threads to resume.

5. It finalizes the unreachable objects that require finalization (now in the
freachable gqueue) by running the Finalize methods on its own thread.

Resource Mmanagement

* some resources are just too valuable to lie around waiting for an
arbitrary length of time until the garbage collector actually releases
them

* memory, database connections, or file handles

* release the resource yourself.
 create a disposal method—a method that explicitly disposes of a resource.

example

TextReader reader = new StreamReader(filename);
string line;

while ((1ine = reader.ReadLine()) != null)
{
Console.WriteLine(l1ne);

¥

reader.Close();

try

{
string line;
while ((1ine = reader.ReadLine()) != null)
{
Console.WriteLine(line);
}
}
finally
{

reader.Close();

}

Drawbacks of finally

* |t quickly becomes unwieldy if you have to dispose of more than one
resource. (You end up with nested try and finally blocks.)

* In some cases, you might need to modify the code to make it fit this idiom.
(For example, you might need to reorder the declaration of the resource
reference, remember to initialize the reference to null, and remember to
check that the reference isn’t null in the finally block.)

* |t fails to create an abstraction of the solution. This means that the solution
is hard to understand and you must repeat the code everywhere you need
this functionality.

* The reference to the resource remains in scope after the finally block. This
means that you can accidentally try to use the resource after it has been
released

using statement

* The using statement provides a clean mechanism for controlling the
lifetimes of resources. You can create an object, and this object will
be destroyed when the using statement block finishes.

* Syntax:
using (type variable = initialization)

{

StatementBlock

example

using (TextReader reader = new StreamReader (filename))

{

string line;
while ((Tine = reader.ReadLine()) != null)
{

Console.WriteLine(line);

¥

Equivalent code!

TextReader reader = new StreamReader(filename);
try
{

string line;

while ((line = reader.ReadLine()) != null)

{
Console.WriteLine(line);
}
}
finally
{
if (reader != null)
{
((IDisposable)reader).Dispose();
}
}

interface IDisposable

* The variable you declare in a using statement must be of a type that
implements the IDisposable interface. The IDisposable interface lives
in the System namespace and contains just one method, named

Dispose:
namespace System

{

interface IDisposable

{

void Dispose();

» the StreamReader class implements the IDisposable interface, and its
Dispose method calls Close to close the stream

